THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2015–2016) Introduction to Topology Exercise 8 Quotient

Remarks

Many of these exercises are adopted from the textbooks (Davis or Munkres). You are suggested to work more from the textbooks or other relevant books.

- 1. Let $X = \{ (x,0) : x \in \mathbb{R} \} \cup \{ (x,1) : x \in \mathbb{R} \} \subset \mathbb{R}^2$, i.e., $X = \mathbb{R} \coprod \mathbb{R}$. Define an equivalence relation on X by identifying (0,0) and (0,1). Rigorously, this means $(s_1,t_1) \sim (s_2,t_2)$ iff $(s_1,t_1) = (s_2,t_2)$ or $(s_1,t_1) = (0,0)$ while $(s_2,t_2) = (0,1)$ or vice versa. Show that X/\sim is homeomorphic to the two axes in \mathbb{R}^2 .
- 2. Let X = { (s,t) ∈ ℝ² : 0 ≠ t ∈ ℤ } and Y = { (s,t) ∈ ℝ² : 1/t ∈ ℤ } be given the standard induced topology. Define an equivalence relation on both X and Y by (s₁,t₁) ~ (s₂,t₂) iff (s₁,t₁) = (s₂,t₂) or s₁ = s₂ = 0. That is points on the y-axis are identified to one point. Is it true that X/~ and Y/~ are homeomorphic?
- 3. Define an equivalence relation on \mathbb{R} by identifying *n* with 1/n for all $n \in \mathbb{Z}$.
 - (a) Sketch a picture to represent the space \mathbb{R}/\sim .
 - (b) Find a sequence $x_n \in \mathbb{R}$ such that $[x_n] \in \mathbb{R}/\sim$ converges but x_n does not.
 - (c) Can a sequence $x_n \in \mathbb{R}$ converge but $[x_n] \in \mathbb{R}/\sim$ does not?
- 4. Let X/\sim be a quotient space obtained from X and $Y \subset X$.
 - (a) Show that there is a natural way to induce an equivalence relation on Y; and thus a quotient space Y/\sim .
 - (b) Let $Y^* = \{ [x] \in (X/\sim) : [x] \cap Y \neq \emptyset \}$ be given the topology induced from X/\sim . Is Y^* homeomorphic to Y/\sim ?
- 5. Let $X = \mathbb{R}/\sim$ where $s \sim t$ if $s, t \in \mathbb{Z}$; also let

$$Y = \bigcup_{n=1}^{\infty} \left\{ z \in \mathbb{C} : \left| z - \frac{1}{n} \right| = \frac{1}{n} \right\} \text{ and } Z = \bigcup_{n=1}^{\infty} \left\{ z \in \mathbb{C} : \left| z - n \right| = n \right\}$$

with induced topology of $\mathbb{C} = \mathbb{R}^2$. Are X, Y, Z homeomorphic to each other?

- 6. Let $A \subset X$. What can you say about $\operatorname{Int}(A)/\sim$ and $\operatorname{Int}(A/\sim)$; $\operatorname{Cl}(A)/\sim$ and $\operatorname{Cl}(A/\sim)$?
- 7. Let \mathfrak{T}_q be the quotient topology on X/\sim and \mathfrak{T}' be any topology. Show that if the quotient map $q: (X, \mathfrak{T}) \to (X/\sim, \mathfrak{T}')$ is continuous, then $\mathfrak{T}' \subset \mathfrak{T}_q$.

- 8. Let Z be any topological space. A mapping f: (X/~, ℑ_q) → Z is continuous if and only if f ∘ q: (X, ℑ) → Z is continuous.
 If ℑ' is a topology on X/~ satisfying the same property, then ℑ' = ℑ_q.
- 9. On the disk $\mathbb{D} = \{ z \in \mathbb{C} : |z| \leq 1 \}$ with induced topology from standard \mathbb{C} , define an equivalence relation ~ by $z_1 \sim z_2$ if $z_1 = z_2$ or $\overline{z}_1 = z_2$ with $|z_1| = 1 = |z_2|$. Show that \mathbb{D}/\sim is homeomorphic to the sphere \mathbb{S}^2 .
- 10. Define a mapping $p: \mathbb{D} \to \mathbb{S}^2$ in the following way. For $z = |z| e^{\mathbf{i}\theta} \in \mathbb{D}$, let

$$p(z) = (\sin(\pi |z|) \cos \theta, \sin(\pi |z|) \sin \theta, -\cos(\pi |z|)) .$$

- (a) Show that the quotient topology on \mathbb{S}^2 induced by p is the standard topology.
- (b) Define an equivalence relation ~ on \mathbb{D} such that $z_1 \sim z_2$ if $p(z_1) = p(z_2)$. What is the topological space \mathbb{D}/\sim ?